A remotely switched 40m-80m matching transformer set for a 10m circumference transmitting loop.
Important : Capacitive balancing the loop antenna.
pa0nhc 20171010

        Preliminary transformer development data.
Experiences so far indicate, that with such a relative high-Q resonating antenna circuit, unexpected matching effects can occur. 

    80m : 
1. Differences occur in frequencies of max. magnetic field strength and minimal VSWR.
2. The min. VSWR frequency shifts 10kHz down when enlarging output power from 5W to 100W.
3. The VSWR changes from 1:1.0 to 1:1.5 when enlarging output power from 5W to 100W.

These are of little influence to the performance of the loop antenna on 80m. 

On 40m these effects do not occur. Tr1 is therefore a suspect.

I will do further experiments with ferrite material and number of turns for Tr1.

40m (Tr2) and 80m (Tr1+Tr2) matching transformer set for a 10m circumference loop.

PCB with two FT240-61 ring core transformers Tr1 + TR2, 
and a FT185-61B ring core mantle current choke L1.
Relay : Omron G2RL-2 (Conrad 503903).

REM: the tap on TR1 is on the top side.
The rotor of the split stator tuning capacitor is connected to the cold sides of T1/T2.
The resistor chain is a 2M2 statics bleeder.
The coax feeder contains NO ferrite clamps nor tubes. 

This PCB is available.

REM : Do NOT use the manufacturers Al value for calculating self the inductance of ring core coils on frequencies higher than 10 kHz !
MEASURE its self inductance at the frequency of interest.

Measurements on Tr1, an extra  3 : 1 transformer for 80m.

FT240-43 core.

15 turns, tap after 5 passes through the hole.
// 68 pF : Fres 3.75 MHz
=>  L = 26.5 uH. Xl = 625 Ohms
=> Al = 0.118 uH @ 1t

======== Ver 2 ========
30 turns, tap after 10 passes through the hole.
// 15 pF : Fres 3.8 MHz
=>  L = 110 uH. Xl = 2625 Ohms
=> Al = 0.122 uH @ 1t

40m low capacitance transformer Tr2
Pri : sec = 9t : 6t .

Tr2 wound on a FT240-61 ring core.

Mark the free space for low capacitance between the ends of secondary windings and the primary windings.

Pri end sec wound with each two wires in parallel for less temperature rise.

Mantle current choke L1

L1 with 14t  3mm coax wound on a FT185-61B ring core.
SRF = 24 MHz. L= 17.5 uH.
XL @ 3.65MHz = 370 Ohms.
Al = 0.089 uH @ 1t

Mantle current choke L1

L1 with 7t  5mm coax wound on a FT185-61B ring core..
SRF = 45MHz. L=5.2uH.
Xl @ 3.65MHz = 110 Ohms.
Al = 0.106 uH @ 1t.



According to by G0CWT developed way, my 10m (1/4 lambda) circumference loop on 7.1 MHz is fed and matched to 50 Ohms by a low coupling capacitance ring core transformer Tr2. It has physically separated primary and secondary windings. 
The secondary winding of Tr2 is inserted between :
a. one end of the loop radiator and 
b. one end of the tuning capacitor.

On this place, the feed point impedance at 7.1 MHz is 22.5 Ohms. With a winding ratio of  9t : 6t  , Tr2 secondary impedance is (50 /(9/6)2) = 22.22 Ohms.

From 7.1 MHz to 3.65 MHz the feed point impedance of the loop drops with a factor 9 to only 2.5 Ohms.
Then Tr1 is switched in cascade, and with a winding ratio of 15t : 5t, it pre-matches the impedance with a ratio of 9:1. 

Total winding ratio on 3.65 MHz is : (9x15) : (6x5) = 135 : 30 = 4.5 : 1 .
Total impedance transformation ratio is (4.52) : (12) = 20.25 : 1 = 50 Ohms : 2.47 Ohms.


        Good to know :

Tr2 MUST have low coupling capacitance between its primary and secondary windings. This is accomplished by separated primary and secondary windings.
The 40m (9t : 6t) matching transformer MUST have an as low as possible (<= 5pF) stray coupling capacitance between the primary and secondary windings.

A to large primary to secondary coupling capacitance in the 40m matching transformer causes :
- Capacitive UN-balance
- Non-pure-magnetic behavior wile receiving or transmitting causing
    - higher chances for BCI and TVI
    - higher noise level received by E-field (man made) noises
    - notice able lower loop-Q

- The used Fairite or Amidon FT240-61 (=61mm) ring cores are chosen for their :
    - very low losses, no core heating
    - very high curie temperature. No vanishing self inductance due to warming-up
    - flat temperature / initial permeability characteristic. 
    - flat frequency / initial permeability characteristic, and constant self  inductance

- On 3.65 MHz and 100 W power applied, in the secondary winding of Tr2 carries 6.3A RF current. As wound on a ferrite core, the RF current mainly runs on the INSIDE of each turn. The temperature rise is there the largest, but the air cooling the worst.

Therefore wind both primary and secondary windings of Tr2 using 2 wires in parallel, loosely and well spaced..

- Wind using lacquered copper wire :
    - has a far bigger copper surface than PVC insulated wire of the same total thickness
    - has a heath resisting thin insulation and therefore will be better air cooled than PVC insulated wire
    - therefore will generate much lower temperatures
    - is solder able after removing some insulation and using a HOT iron (435C).

- The secondary turns of Tr2 also can carry up to 1.1kVpp RF voltages. Prevent flash over.
           Therefore :
- Wind around the whole ring core an eight times thick insulating layer of Teflon tape (gas tape).
- Be sure to keep at least 2mm free air space between primary and secondary windings.


When a wire goes 1x through the hole of a ring core, it counts for ONE COMPLETED winding.

        Winding the 40m 9:6 low capacitance ring core transformer.
Insulate the ring core with a 1mm thick layer of Teflon tape on the half where the secondary winding comes.
Wind two 2mm thick lacquered copper wire in parallel and loosely, in order not to damage the Teflon insulation, and to improve air cooling of the wire.

* Wind one wire of the secondary winding 6 times through the hole first. Then wind the 6 turns of the second wire in between the windings of the first. Wind loosely with airspace between the core and the turns. Divide them evenly.

* Then wind the two wires of the secondary winding in the same way 9 times through the hole.
* For best cooling, divide all windings equally around the core

* Be sure to have at least 2mm air space between the primary and the secondary windings (see photo).


        Winding the 15:5 80m ring core transformer.
* Wind one 2mm lacquered copper wire loosely 15 times through the hole of the ring core.
* Divide windings fully and evenly around the core to improve air cooling

After the wire has passed 5 times through the hole, remove the insulation of the wire at the outside of the core. Use a sharp knife. Solder the tap wire here.


        Choke L1
The used FT185-61B (pink Philips / white Fairrite 4C65 36mm) ring core haves very low losses and will not become hot, has constant properties between 3 MHz and 25 MHz, and to over 200C.

The use of 50 Ohms Teflon coax is recommended for its high temperature and voltage properties. Thin 2.7mm dia RG188U is specified from -40C to 200C and 160W @ 1GHz. It can handle With 100W the peak voltage is only 100V.

Thicker coax makes less turns and self inductance possible on the same core. Per turn 2.7mm coax is 1.5cm coax needed. Per turn 5.1mm coax 8cm is needed.

Fix the coil ends to the ring core with Ty-wraps.

Wind 2,7mm RG188U Teflon coax 14x through the hole of the ring core.

        OR  :

Wind 5,1mm RG142U Teflon or RG58U coax 7x through the hole of the ring core.

Fix the coil ends to the ring core with tywraps.


Important : balancing the loop.

In my situation, two TV sets and a hi-fi radio / amplifier are situated only a few meters under the antenna. They are wired to separated hi-fi loudspeakers, a blue-ray player and a cable tuner. After installing the low capacitance 40m transformer, and balancing the loop, i had NO BCI nor TVI.

        Balancing (see cabinet photo) :
1. Connect a 5pF / 4kV capacitor (5cm RG214 coax) over the opposite half of the split stator tuning capacitor. This balances-out the 5pF stray capacitance of the 40m matching transformer.

2. FORCE the loop to capacitive balance in respect to all surroundings, by connecting the split stator rotor shaft to the screening of the coax feeder.

3. A big Hi-Mu ringcore (Ui=5.000 to 10.000) with a few windings feeder coax through it, blocs feeder coax mantle currents best. Use the thinnest coax which can handle the used power for more windings through the core.

The loop itself is fully insulated from ground. Static charges on it could cause flash-over in the split stator tuning capacitor, or even between the secondary and primary windings of Tr2.

Static charges are flowing to ground via a chain of ten resistors 220kOhms 0.25W in series. Using 100W power, each resistor is safely loaded only with max 100 Vrms and 26 mW. The chain can be floating mounted, or could be on a piece of copp

er less hard paper or a piece of plexy glass.