Pa0nhc RF low power meter 20171218.

Installation of the PCB into the lid. See drill sketches.

- Install the switches into their holes in the lid, with the nuts loosely fixed.

- Put the LED wires into the PCB. Do not solder them yet.

- Shift the BNC bus into its hole, while shifting the PCB over the switch pins.

- Then shift the LED into its hole in the lid.

- Fasten the nut of the BNC bus. The house of the BNC bus has to rest against the inside of the lid front.

- Check the correct position of the PCB.

REM : <u>As the BNC bus has to rest to the lid internal surface, the body-width of the BNCbus</u> will set the distance between the PCB and the lid.

There should now be a little space between the base of the switches and the PCB.

- Solder the switches and the LED on the component side of the PCB. Cut excess LED wires.

- Solder the meter wires and the battery wires to the PCB.

- Prevent broken wires. Glue the wires (with thermal glue) at the solder points to the PCB.

Functional check.

As this instrument does measure the **real rms value** of the wave form presented to it : 1. A square wave signal will give a <u>higher</u> indication than a sine wave signal with the same amplitude.

2. A triangle wave signal will give a *lower* indication than a sine wave with the same amplitude.

For checking its performance, a sine wave signal with a known amplitude is presented to the 50 Ohms BNC bus as follows :

- Insert batteries.

- Put some soft foam plastic between the meter and the battery holder.

- Close the box.

- Set s2 into position "UNsensitive" (0dB)..

- Inject a 0.442 Vrms **sine wave** signal to the 50 Ohms BNCbus. The meter should indicate "+6".

- Set s2 into position "Sensitive" (-20dB).

- Inject a 44.2 mVrms **sine wave** signal to the 50 Ohms BNCbus. Again, the meter should indicate "+6".